WHAT IS HOMOGENEITY, AND WHY CARE?

Manuel Križ

Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS)
École Normale Supérieure, PSL Research University

manuel@kriz.fr

Jahrestagung der DGfS
Konstanz, February 2015
Homogeneity…

… and Its Applications
HOMOGENEITY

(1) **Context:** Mr. Benfleet published half of the books.

 A: Mr. Benfleet published the books.
 B: Well, half of them…

This disappears when all is added (Löbner 2000):

(2) **Context:** Mr. Benfleet published half of the books.

 A: Mr. Benfleet published all of the books.
 B: No, he didn’t.

Usually seen as a presupposition of distributive predicates.
HOMOGENEITY

(1) Context: Mr. Benfleet published half of the books.
 A: Mr. Benfleet published the books.
 B: Well, half of them…

This disappears when all is added (Löbner 2000):

(2) Context: Mr. Benfleet published half of the books.
 A: Mr. Benfleet published all of the books.
 B: No, he didn’t.

Usually seen as a presupposition of distributive predicates.
HOMOGENEITY

(1) Context: Mr. Benfleet published half of the books.
 A: Mr. Benfleet published the books.
 B: Well, half of them…

This disappears when all is added (Löbner 2000):

(2) Context: Mr. Benfleet published half of the books.
 A: Mr. Benfleet published all of the books.
 B: No, he didn’t.

Usually seen as a presupposition of distributive predicates.
NOVEL CLAIMS

- This is not some idiosyncracy of distributive plural predication, but a fundamental and pervasive feature of natural language predication in general.
- The phenomenon is different from presupposition and implicature; it has some similarities with vagueness, but differences remain.
- It can be elegantly described in a trivalent logic with an algebraic semantics.
- It surfaces in many other constructions and offers a new, unified, and predictive perspective on their properties: bare plurals, embedded questions, conditionals, cleft-sentences, generics, possibly neg-raising.
- It correlates with exception-tolerance across constructions.
NOVEL CLAIMS

• This is not some idiosyncracy of distributive plural predication, but a fundamental and pervasive feature of natural language predication in general.

• The phenomenon is different from presupposition and implicature; it has some similarities with vagueness, but differences remain.

• It can be elegantly described in a trivalent logic with an algebraic semantics.

• It surfaces in many other constructions and offers a new, unified, and predictive perspective on their properties: bare plurals, embedded questions, conditionals, cleft-sentences, generics, possibly neg-raising.

• It correlates with exception-tolerance across constructions.
NOVEL CLAIMS

• This is not some idiosyncracy of distributive plural predication, but a fundamental and pervasive feature of natural language predication in general.

• The phenomenon is different from presupposition and implicature; it has some similarities with vagueness, but differences remain.

• It can be elegantly described in a trivalent logic with an algebraic semantics.

• It surfaces in many other constructions and offers a new, unified, and predictive perspective on their properties: bare plurals, embedded questions, conditionals, cleft-sentences, generics, possibly neg-raising.

• It correlates with exception-tolerance across constructions.
NOVEL CLAIMS

• This is not some idiosyncracy of distributive plural predication, but a fundamental and pervasive feature of natural language predication in general.

• The phenomenon is different from presupposition and implicature; it has some similarities with vagueness, but differences remain.

• It can be elegantly described in a trivalent logic with an algebraic semantics.

• It surfaces in many other constructions and offers a new, unified, and predictive perspective on their properties: bare plurals, embedded questions, conditionals, cleft-sentences, generics, possibly neg-raising.

• It correlates with exception-tolerance across constructions.
NOVEL CLAIMS

- This is not some idiosyncracy of distributive plural predication, but a fundamental and pervasive feature of natural language predication in general.
- The phenomenon is different from presupposition and implicature; it has some similarities with vagueness, but differences remain.
- It can be elegantly described in a trivalent logic with an algebraic semantics.
- It surfaces in many other constructions and offers a new, unified, and predictive perspective on their properties: bare plurals, embedded questions, conditionals, cleft-sentences, generics, possibly neg-raising.
- It correlates with exception-tolerance across constructions.
NOVEL CLAIMS

• This is not some idiosyncracy of distributive plural predication, but a fundamental and pervasive feature of natural language predication in general.
• The phenomenon is different from presupposition and implicature; it has some similarities with vagueness, but differences remain.
• It can be elegantly described in a trivalent logic with an algebraic semantics.
• It surfaces in many other constructions and offers a new, unified, and predictive perspective on their properties: bare plurals, embedded questions, conditionals, cleft-sentences, generics, possibly neg-raising.
• It correlates with exception-tolerance across constructions.
What happens when a homogeneous predication is embedded under a quantifier?

(3) Every publisher published the books proposed to him.

Križ & Chemla 2015: Experimental investigation that uncovers a regular pattern of undefinedness. Example:

(4) Every publisher published the books.

- true if every publisher published all books.
- false if at least one publisher published none.
- undef. otherwise.
HOMOGENEITY IN COMPLEX SENTENCES

What happens when a homogeneous predication is embedded under a quantifier?

(3) Every publisher published the books proposed to him.

Križ & Chemla 2015: Experimental investigation that uncovers a regular pattern of undefinedness. Example:

(4) Every publisher published the books.
 - true if every publisher published all books.
 - false if at least one publisher published none.
 - undef. otherwise.
HOMOGENEITY AND TRIVALENT LOGIC

- All predicates are subject to the following constraint:

(5) Generalised Homogeneity
If \(P \) is true of \(a \) and false of \(b \), then \(a \) and \(b \) don’t overlap (i.e. have no parts in common).

- A notion of parthood and the homogeneity constraint can be generalised across all denotational domains: Predicates (with arbitrary many arguments) and quantifiers also have parts, and quantifiers as properties of predicates have to obey the homogeneity constraint.

- The resulting system captures the homogeneity of predication, its interaction with quantifiers (Križ & Chemla 2015), and its removal by all — all based on a single generalised principle.
HOMOGENEITY AND TRIVALENT LOGIC

- All predicates are subject to the following constraint:

\[(5) \quad \text{Generalised Homogeneity}\]
If \(P\) is true of \(a\) and false of \(b\), then \(a\) and \(b\) don’t overlap (i.e. have no parts in common).

- A notion of parthood and the homogeneity constraint can be generalised across all denotational domains: Predicates (with arbitrary many arguments) and quantifiers also have parts, and quantifiers as properties of predicates have to obey the homogeneity constraint.
- The resulting system captures the homogeneity of predication, its interaction with quantifiers (Križ & Chemla 2015), and its removal by all — all based on a single generalised principle.
HOMOGENEITY AND TRIVALENT LOGIC

• All predicates are subject to the following constraint:

\[(5) \text{ Generalised Homogeneity} \]
If \(P \) is true of \(a \) and false of \(b \), then \(a \) and \(b \) don’t overlap (i.e. have no parts in common).

• A notion of parthood and the homogeneity constraint can be generalised across all denotational domains: Predicates (with arbitrary many arguments) and quantifiers also have parts, and quantifiers as properties of predicates have to obey the homogeneity constraint.

• The resulting system captures the homogeneity of predication, its interaction with quantifiers (Križ & Chemla 2015), and its removal by all — all based on a single generalised principle.
HOMOGENEITY AND TRIVALENT LOGIC

- All predicates are subject to the following constraint:

\[(5) \text{ Generalised Homogeneity} \]
If \(P\) is true of \(a\) and false of \(b\), then \(a\) and \(b\) don’t overlap (i.e. have no parts in common).

- A notion of parthood and the homogeneity constraint can be generalised across all denotational domains: Predicates (with arbitrary many arguments) and quantifiers also have parts, and quantifiers as properties of predicates have to obey the homogeneity constraint.

- The resulting system captures the homogeneity of predication, its interaction with quantifiers (Križ & Chemla 2015), and its removal by \textit{all} — all based on a single generalised principle.
NON-MAXIMALITY

• Plural predication is also famous for tolerating some exceptions (*non-maximality*; Brisson 1998, Lasersohn 1999, Malamud 2012). This, too, disappears when *all* is added:

(6) Context: *All the professors smiled except the perpetually dour Prof. Smith, who is known to never smile anyway."

a. The professors smiled.

b. #All the professors smiled.

• Explicable if there is a pragmatic principle that allows us to use a literally undefined sentence under certain conditions, but never a literally false sentence (Križ 2015a).

• Homogeneity and exception tolerance correlate across constructions.
NON-MAXIMALITY

- Plural predication is also famous for tolerating some exceptions (*non-maximality*; Brisson 1998, Lasersohn 1999, Malamud 2012). This, too, disappears when *all* is added:

(6) Context: *All the professors smiled except the perpetually dour Prof. Smith, who is known to never smile anyway.*

a. The professors smiled.

b. #All the professors smiled.

- Explicable if there is a pragmatic principle that allows us to use a literally undefined sentence under certain conditions, but never a literally false sentence (Križ 2015a).

- Homogeneity and exception tolerance correlate across constructions.
NON-MAXIMALITY

• Plural predication is also famous for tolerating some exceptions (*non-maximality*; Brisson 1998, Lasersohn 1999, Malamud 2012). This, too, disappears when *all* is added:

(6) Context: *All the professors smiled except the perpetually dour Prof. Smith, who is known to never smile anyway.*

a. The professors smiled.
b. #All the professors smiled.

• Explicable if there is a pragmatic principle that allows us to use a literally undefined sentence under certain conditions, but never a literally false sentence (Križ 2015a).

• Homogeneity and exception tolerance correlate across constructions.
Homogeneity…

… and Its Applications
CLEFTS

Exhaustivity in clefts can be analysed as a reflex of homogeneity (Büring & Križ 2013, Križ 2016):

(7) Context: Nina invited both the boys and the girls.
 #It was the boys that Nina invited.

The undefinedness of (7) in such a situation follows from two assumptions:

1. Clefts are identity statements.
2. Identity follows homogeneity in the same way as other binary relations in natural language (independently motivated).
CLEFTS

Exhaustivity in clefts can be analysed as a reflex of homogeneity (Büring & Križ 2013, Križ 2016):

(7) Context: Nina invited both the boys and the girls.
 #It was the boys that Nina invited.

The undefinedness of (7) in such a situation follows from two assumptions:

1. Clefts are identity statements.
2. Identity follows homogeneity in the same way as other binary relations in natural language (independently motivated).
Conditionals show a similar effect to plural predcations, known as the *conditional excluded middle* (Stalnaker 1981, von Fintel 1999):

(8) If Nina comes, Adam will be happy.

undef. if given Nina’s coming, Adam may or may not be happy.

This follows immediately if conditionals involve pluralities of possible worlds/situations (Schlenker 2004, Klinedinst 2007). Conditionals allow us to ignore remote, irrelevant possibilities when evaluating them. This behaves like non-maximality and disappears with homogeneity-removing adverbs like *certainly*.
CONDITIONALS

Conditionals show a similar effect to plural predications, known as the *conditional excluded middle* (Stalnaker 1981, von Fintel 1999):

(8) If Nina comes, Adam will be happy.

undef. if given Nina’s coming, Adam may or may not be happy.

This follows immediately if conditionals involve pluralities of possible worlds/situations (Schlenker 2004, Klinedinst 2007). Conditionals allow us to ignore remote, irrelevant possibilities when evaluating them. This behaves like non-maximality and disappears with homogeneity-removing adverbs like *certainly.*
CONDITIONALS

Conditionals show a similar effect to plural predications, known as the conditional excluded middle (Stalnaker 1981, von Fintel 1999):

(8) If Nina comes, Adam will be happy.
undef. if given Nina’s coming, Adam may or may not be happy.

This follows immediately if conditionals involve pluralities of possible worlds/situations (Schlenker 2004, Klinedinst 2007). Conditionals allow us to ignore remote, irrelevant possibilities when evaluating them. This behaves like non-maximality and disappears with homogeneity-removing adverbs like certainly.
CONDITIONALS

Conditionals show a similar effect to plural predications, known as the conditional excluded middle (Stalnaker 1981, von Fintel 1999):

(8) If Nina comes, Adam will be happy.

undef. if given Nina’s coming, Adam may or may not be happy.

This follows immediately if conditionals involve pluralities of possible worlds/situations (Schlenker 2004, Klinedinst 2007). Conditionals allow us to ignore remote, irrelevant possibilities when evaluating them. This behaves like non-maximality and disappears with homogeneity-removing adverbs like *certainly*.

10/17
BARE PLURALS

(9) a. Mary saw zebras. \(\sim\) Mary saw \(>\) 1 one zebra.
 b. Mary didn’t see zebras. \(\sim\) Mary saw no zebra.

- With minimal extra assumptions, the trivalent view predicts that (9a) and (9b) are both undefined when Mary saw exactly one zebra.
- This makes detailed predictions about the behaviour of bare plurals in various embedded contexts.
- Non-maximality can account for context-dependence.
- The predictions differ very subtly from the best existing theories. Experimental tests have not (yet) been performed.
BARE PLURALS

(9) a. Mary saw zebras. \(\sim\) Mary saw > 1 one zebra.
 b. Mary didn’t see zebras. \(\sim\) Mary saw no zebra.

• With minimal extra assumptions, the trivalent view predicts that (9a) and (9b) are both undefined when Mary saw exactly one zebra.

• This makes detailed predictions about the behaviour of bare plurals in various embedded contexts. Non-maximality can account for context-dependence.

• The predictions differ very subtly from the best existing theories. Experimental tests have not (yet) been performed.
BARE PLURALS

(9)
\[\begin{align*}
\text{a. Mary saw zebras.} & \implies \text{Mary saw } > 1 \text{ one zebra.} \\
\text{b. Mary didn’t see zebras.} & \implies \text{Mary saw no zebra.}
\end{align*}\]

- With minimal extra assumptions, the trivalent view predicts that (9a) and (9b) are both undefined when Mary saw exactly one zebra.
- This makes detailed predictions about the behaviour of bare plurals in various embedded contexts. Non-maximality can account for context-dependence.
- The predictions differ very subtly from the best existing theories. Experimental tests have not (yet) been performed.
EMBEDDED QUESTIONS

Embedded questions also show homogeneity-like behaviour in that a universal changes into an existential under negation:

(10) a. Agatha knows who came to the party.
 ⟷ Agatha is fully informed about the guests.

 b. Agatha doesn’t know who came to the party.
 ⟷ Agatha has no idea about the guests.

This (and some other facts about embedded questions) can be explained as a consequence of the homogeneity of plural predication under the trivalent view (Križ 2015b).
Generics show “flipping” effects...

(11)

a. Dogs are intelligent.
 \[\implies \text{All normal dogs are intelligent.}\]

b. Dogs aren’t intelligent.
 \[\implies \text{No normal dog is intelligent.}\]

...and are famous for allowing exceptions. (Though maybe not all kinds of exceptions are alike here.)

Adding all makes the flipping effect disappear and reduces exception tolerance:

(12) All dogs are intelligent.
GENERICS

Generics show “flipping” effects...

(11) a. Dogs are intelligent.
 \[\leadsto All \text{ normal dogs are intelligent.}\]
 b. Dogs aren’t intelligent.
 \[\leadsto No \text{ normal dog is intelligent.}\]

…and are famous for allowing exceptions. (Though maybe not all kinds of exceptions are alike here.)

Adding *all* makes the flipping effect disappear and reduces exception tolerance:

(12) All dogs are intelligent.
A parallel between homogeneity and neg-raising was suggested by Gajewski (2005): A neg-raising verb like believe involves a plural predication over possible situations.

(13) Agatha believes that \(p \).
 ‘In the possible situations that are compatible with Agatha’s beliefs, \(p \) is the case.’

Surprisingly, it turns out that this parallel, though conceptually extremely elegant, is empirically shakier than all the other cases mentioned... The verdict is unclear!
A parallel between homogeneity and neg-raising was suggested by Gajewski (2005): A neg-raising verb like believe involves a plural predication over possible situations.

(13) Agatha believes that p.
 ‘In the possible situations that are compatible with Agatha’s beliefs, p is the case.’

Surprisingly, it turns out that this parallel, though conceptually extremely elegant, is empirically shakier than all the other cases mentioned... The verdict is unclear!
THANK YOU!
REFERENCES

REFERENCES II

